

## Standard Multi-hole Probes



Additive manufacturing allows almost any geometry



Titanium, Inconel, stainless steel, plastics and more



One-piece, robust design



Adjustable reference surfaces, connections and software

| Multi-hole Probe               |                                                                                               |  |
|--------------------------------|-----------------------------------------------------------------------------------------------|--|
| Geometry                       | Straight, L-shaped, Cobra,<br>Drilled elbow                                                   |  |
| Number of holes<br>Max. length | 3, 5, 7 plus static ring<br>< 280 mm (one part)<br>>280 mm multipart designs                  |  |
| Min. tip diameter              | >=3 mm (micro: >1,6)                                                                          |  |
| Tip geometry                   | Conical, spherical, or custom                                                                 |  |
| Material                       | Stainless steel, Titanium, Inconel, Plastic                                                   |  |
| Connections                    | Standard 1mm or 1,6mm pressure tubes                                                          |  |
| Fastening                      | Square, hexagonal, one-<br>sided flattened cylinder, or<br>custom                             |  |
| Reference                      | Reference surface normal to Z axis                                                            |  |
| Temperature range              | Max. 800°C<br>(higher on request)                                                             |  |
| Angular range                  | ±60°                                                                                          |  |
| Angular accuracy               | < ±1°                                                                                         |  |
| Velocity range                 | 3 m/s to supersonic speeds (depends on calibration)                                           |  |
| Velocity accuracy              | < ±1 m/s                                                                                      |  |
| Optional                       | Frequency calibration dependent on geometry. Temperature measurements (Thermocouple or PT100) |  |

Table 1 General Data



Figure 1 Multi-hole Probes

The multi-hole probes from Vectoflow range from 3-hole over 5-hole up to 7-hole probes for larger flow angles up to  $\pm 60^{\circ}$ . They are used in a large variety of applications like motor sports, turbomachinery, and drones.

Like all probes from Vectoflow, they are made by additive manufacturing, giving a high geometrical flexibility and a very high robustness at the same time. The probes are generally built out of one piece, with no internal tubing or welding, avoiding any internal leakage and assuring a long lifetime.

The Vectoflow concept offers a high level of customization. The probes can therefore be adapted to every specific use case.

## Measurement error

The measurement error of a multi-hole probe depends on the pressure scanner used for the calibration and data acquisition.

We recommend the use of a scanner whose pressure range just covers the expected dynamic pressure, and whose accuracy is 0.1 % full scale or better.

The lower the velocity, the higher becomes the impact of the pressure measurement error onto the determination of the flow velocity, as shown in figure 1 (for a scanner accuracy of  $\pm$  0.05 % FS).

Generally, an error of 1 m/s or 1% of the measured velocity - whichever is higher - is expected at higher speeds. For lower speeds, the error depends on the pressure scanner and increases the lower the speed.

Page - 1 - of 2 Version: 2023-07-14



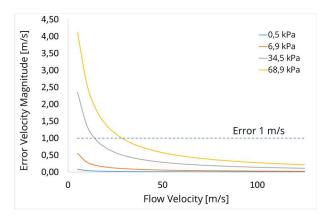



Figure 2 Dependency of velocity measurement error on pressure scanner range (0.05% FS accuracy)

## **Calibration process**

The calibration process is always necessary for each manufactured multi-hole probe. Vectoflow has its own calibration wind tunnel, delivering flow speeds from 1 m/s up to Mach 1 (higher Mach numbers upon request). Vectoflow has a very rigid quality assurance, which ultimately leads to the highest possible measurement accuracy of the flow probes.

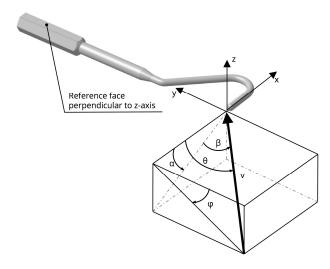



Figure 3 Flow angle definitions

During the calibration process, the probe is exposed to a steady flow with known conditions, while pitch and yaw angles change through thousands of positions. The definition of the flow angles is shown in Figure 3 Flow angle definitionsFigure 3.

The following table shows the main characteristics of the Vectoflow calibration wind tunnel.

| Calibration wind tunnel      |                                       |
|------------------------------|---------------------------------------|
| Angular range                | ±165° (yaw axis), 180°<br>(roll axis) |
| Max. Power                   | 90 kW                                 |
| Velocity range               | From 1 m/s to Mach 1                  |
| Control parameters           | Mach number, velocity (m/s)           |
| Long-term velocity stability | ±0.25 % (at M 0.1)                    |
|                              | 1 1 ( ) 1 ( ) ( ) ( )                 |

Table 2 Calibration wind tunnel characteristics

## **System solutions**

Vectoflow provides not only flow probes, but complete measurement systems.

These solutions include:

- Probe
- Tubing connections
- Pressure scanner
- Software

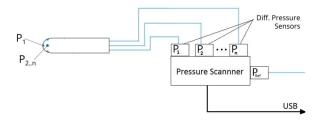



Figure 4 Multi-hole probe pressure tube connection

There is a variety of pressure scanners available, which integrate perfectly into the VectoVis Pro Software.